Copied to
clipboard

G = C23.551C24order 128 = 27

268th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.48C23, C23.551C24, C22.2422- 1+4, C22.3262+ 1+4, (C2×C42).83C22, C23.4Q834C2, C23.Q845C2, C23.11D469C2, (C22×C4).161C23, C23.10D4.35C2, (C22×D4).204C22, C24.C22109C2, C23.81C2367C2, C2.49(C22.32C24), C24.3C22.58C2, C23.63C23118C2, C2.C42.558C22, C2.48(C22.33C24), C2.58(C22.36C24), C2.34(C22.34C24), C2.103(C23.36C23), (C4×C4⋊C4)⋊113C2, (C2×C4).176(C4○D4), (C2×C4⋊C4).376C22, C22.423(C2×C4○D4), (C2×C22⋊C4).234C22, SmallGroup(128,1383)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.551C24
C1C2C22C23C22×C4C2×C22⋊C4C24.C22 — C23.551C24
C1C23 — C23.551C24
C1C23 — C23.551C24
C1C23 — C23.551C24

Generators and relations for C23.551C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=ca=ac, e2=a, g2=b, ab=ba, ede-1=ad=da, ae=ea, gfg-1=af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, dg=gd, eg=ge >

Subgroups: 436 in 210 conjugacy classes, 88 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22×D4, C4×C4⋊C4, C23.63C23, C24.C22, C24.3C22, C23.10D4, C23.Q8, C23.11D4, C23.81C23, C23.4Q8, C23.551C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C23.36C23, C22.32C24, C22.33C24, C22.34C24, C22.36C24, C23.551C24

Smallest permutation representation of C23.551C24
On 64 points
Generators in S64
(1 27)(2 28)(3 25)(4 26)(5 60)(6 57)(7 58)(8 59)(9 47)(10 48)(11 45)(12 46)(13 51)(14 52)(15 49)(16 50)(17 43)(18 44)(19 41)(20 42)(21 40)(22 37)(23 38)(24 39)(29 36)(30 33)(31 34)(32 35)(53 63)(54 64)(55 61)(56 62)
(1 58)(2 59)(3 60)(4 57)(5 25)(6 26)(7 27)(8 28)(9 43)(10 44)(11 41)(12 42)(13 39)(14 40)(15 37)(16 38)(17 47)(18 48)(19 45)(20 46)(21 52)(22 49)(23 50)(24 51)(29 56)(30 53)(31 54)(32 55)(33 63)(34 64)(35 61)(36 62)
(1 25)(2 26)(3 27)(4 28)(5 58)(6 59)(7 60)(8 57)(9 45)(10 46)(11 47)(12 48)(13 49)(14 50)(15 51)(16 52)(17 41)(18 42)(19 43)(20 44)(21 38)(22 39)(23 40)(24 37)(29 34)(30 35)(31 36)(32 33)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 20 27 42)(2 43 28 17)(3 18 25 44)(4 41 26 19)(5 10 60 48)(6 45 57 11)(7 12 58 46)(8 47 59 9)(13 32 51 35)(14 36 52 29)(15 30 49 33)(16 34 50 31)(21 56 40 62)(22 63 37 53)(23 54 38 64)(24 61 39 55)
(1 50)(2 24)(3 52)(4 22)(5 40)(6 15)(7 38)(8 13)(9 30)(10 54)(11 32)(12 56)(14 25)(16 27)(17 63)(18 34)(19 61)(20 36)(21 60)(23 58)(26 37)(28 39)(29 42)(31 44)(33 47)(35 45)(41 55)(43 53)(46 62)(48 64)(49 57)(51 59)
(1 30 58 53)(2 31 59 54)(3 32 60 55)(4 29 57 56)(5 61 25 35)(6 62 26 36)(7 63 27 33)(8 64 28 34)(9 38 43 16)(10 39 44 13)(11 40 41 14)(12 37 42 15)(17 50 47 23)(18 51 48 24)(19 52 45 21)(20 49 46 22)

G:=sub<Sym(64)| (1,27)(2,28)(3,25)(4,26)(5,60)(6,57)(7,58)(8,59)(9,47)(10,48)(11,45)(12,46)(13,51)(14,52)(15,49)(16,50)(17,43)(18,44)(19,41)(20,42)(21,40)(22,37)(23,38)(24,39)(29,36)(30,33)(31,34)(32,35)(53,63)(54,64)(55,61)(56,62), (1,58)(2,59)(3,60)(4,57)(5,25)(6,26)(7,27)(8,28)(9,43)(10,44)(11,41)(12,42)(13,39)(14,40)(15,37)(16,38)(17,47)(18,48)(19,45)(20,46)(21,52)(22,49)(23,50)(24,51)(29,56)(30,53)(31,54)(32,55)(33,63)(34,64)(35,61)(36,62), (1,25)(2,26)(3,27)(4,28)(5,58)(6,59)(7,60)(8,57)(9,45)(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,41)(18,42)(19,43)(20,44)(21,38)(22,39)(23,40)(24,37)(29,34)(30,35)(31,36)(32,33)(53,61)(54,62)(55,63)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20,27,42)(2,43,28,17)(3,18,25,44)(4,41,26,19)(5,10,60,48)(6,45,57,11)(7,12,58,46)(8,47,59,9)(13,32,51,35)(14,36,52,29)(15,30,49,33)(16,34,50,31)(21,56,40,62)(22,63,37,53)(23,54,38,64)(24,61,39,55), (1,50)(2,24)(3,52)(4,22)(5,40)(6,15)(7,38)(8,13)(9,30)(10,54)(11,32)(12,56)(14,25)(16,27)(17,63)(18,34)(19,61)(20,36)(21,60)(23,58)(26,37)(28,39)(29,42)(31,44)(33,47)(35,45)(41,55)(43,53)(46,62)(48,64)(49,57)(51,59), (1,30,58,53)(2,31,59,54)(3,32,60,55)(4,29,57,56)(5,61,25,35)(6,62,26,36)(7,63,27,33)(8,64,28,34)(9,38,43,16)(10,39,44,13)(11,40,41,14)(12,37,42,15)(17,50,47,23)(18,51,48,24)(19,52,45,21)(20,49,46,22)>;

G:=Group( (1,27)(2,28)(3,25)(4,26)(5,60)(6,57)(7,58)(8,59)(9,47)(10,48)(11,45)(12,46)(13,51)(14,52)(15,49)(16,50)(17,43)(18,44)(19,41)(20,42)(21,40)(22,37)(23,38)(24,39)(29,36)(30,33)(31,34)(32,35)(53,63)(54,64)(55,61)(56,62), (1,58)(2,59)(3,60)(4,57)(5,25)(6,26)(7,27)(8,28)(9,43)(10,44)(11,41)(12,42)(13,39)(14,40)(15,37)(16,38)(17,47)(18,48)(19,45)(20,46)(21,52)(22,49)(23,50)(24,51)(29,56)(30,53)(31,54)(32,55)(33,63)(34,64)(35,61)(36,62), (1,25)(2,26)(3,27)(4,28)(5,58)(6,59)(7,60)(8,57)(9,45)(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,41)(18,42)(19,43)(20,44)(21,38)(22,39)(23,40)(24,37)(29,34)(30,35)(31,36)(32,33)(53,61)(54,62)(55,63)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20,27,42)(2,43,28,17)(3,18,25,44)(4,41,26,19)(5,10,60,48)(6,45,57,11)(7,12,58,46)(8,47,59,9)(13,32,51,35)(14,36,52,29)(15,30,49,33)(16,34,50,31)(21,56,40,62)(22,63,37,53)(23,54,38,64)(24,61,39,55), (1,50)(2,24)(3,52)(4,22)(5,40)(6,15)(7,38)(8,13)(9,30)(10,54)(11,32)(12,56)(14,25)(16,27)(17,63)(18,34)(19,61)(20,36)(21,60)(23,58)(26,37)(28,39)(29,42)(31,44)(33,47)(35,45)(41,55)(43,53)(46,62)(48,64)(49,57)(51,59), (1,30,58,53)(2,31,59,54)(3,32,60,55)(4,29,57,56)(5,61,25,35)(6,62,26,36)(7,63,27,33)(8,64,28,34)(9,38,43,16)(10,39,44,13)(11,40,41,14)(12,37,42,15)(17,50,47,23)(18,51,48,24)(19,52,45,21)(20,49,46,22) );

G=PermutationGroup([[(1,27),(2,28),(3,25),(4,26),(5,60),(6,57),(7,58),(8,59),(9,47),(10,48),(11,45),(12,46),(13,51),(14,52),(15,49),(16,50),(17,43),(18,44),(19,41),(20,42),(21,40),(22,37),(23,38),(24,39),(29,36),(30,33),(31,34),(32,35),(53,63),(54,64),(55,61),(56,62)], [(1,58),(2,59),(3,60),(4,57),(5,25),(6,26),(7,27),(8,28),(9,43),(10,44),(11,41),(12,42),(13,39),(14,40),(15,37),(16,38),(17,47),(18,48),(19,45),(20,46),(21,52),(22,49),(23,50),(24,51),(29,56),(30,53),(31,54),(32,55),(33,63),(34,64),(35,61),(36,62)], [(1,25),(2,26),(3,27),(4,28),(5,58),(6,59),(7,60),(8,57),(9,45),(10,46),(11,47),(12,48),(13,49),(14,50),(15,51),(16,52),(17,41),(18,42),(19,43),(20,44),(21,38),(22,39),(23,40),(24,37),(29,34),(30,35),(31,36),(32,33),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,20,27,42),(2,43,28,17),(3,18,25,44),(4,41,26,19),(5,10,60,48),(6,45,57,11),(7,12,58,46),(8,47,59,9),(13,32,51,35),(14,36,52,29),(15,30,49,33),(16,34,50,31),(21,56,40,62),(22,63,37,53),(23,54,38,64),(24,61,39,55)], [(1,50),(2,24),(3,52),(4,22),(5,40),(6,15),(7,38),(8,13),(9,30),(10,54),(11,32),(12,56),(14,25),(16,27),(17,63),(18,34),(19,61),(20,36),(21,60),(23,58),(26,37),(28,39),(29,42),(31,44),(33,47),(35,45),(41,55),(43,53),(46,62),(48,64),(49,57),(51,59)], [(1,30,58,53),(2,31,59,54),(3,32,60,55),(4,29,57,56),(5,61,25,35),(6,62,26,36),(7,63,27,33),(8,64,28,34),(9,38,43,16),(10,39,44,13),(11,40,41,14),(12,37,42,15),(17,50,47,23),(18,51,48,24),(19,52,45,21),(20,49,46,22)]])

32 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E···4P4Q···4V
order12···22244444···44···4
size11···18822224···48···8

32 irreducible representations

dim1111111111244
type+++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C4○D42+ 1+42- 1+4
kernelC23.551C24C4×C4⋊C4C23.63C23C24.C22C24.3C22C23.10D4C23.Q8C23.11D4C23.81C23C23.4Q8C2×C4C22C22
# reps11141212211231

Matrix representation of C23.551C24 in GL8(𝔽5)

10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00100000
00010000
00001000
00000100
00000010
00000001
,
10000000
01000000
00400000
00040000
00004000
00000400
00000040
00000004
,
03000000
20000000
00200000
00020000
00000032
00000012
00003200
00001200
,
10000000
01000000
00020000
00300000
00003000
00000300
00000020
00000002
,
01000000
10000000
00010000
00100000
00000010
00000001
00001000
00000100
,
30000000
03000000
00100000
00010000
00004100
00000100
00000014
00000004

G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,2,2,0,0,0,0,3,1,0,0,0,0,0,0,2,2,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,4] >;

C23.551C24 in GAP, Magma, Sage, TeX

C_2^3._{551}C_2^4
% in TeX

G:=Group("C2^3.551C2^4");
// GroupNames label

G:=SmallGroup(128,1383);
// by ID

G=gap.SmallGroup(128,1383);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,120,758,723,185,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=c*a=a*c,e^2=a,g^2=b,a*b=b*a,e*d*e^-1=a*d=d*a,a*e=e*a,g*f*g^-1=a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*g=g*e>;
// generators/relations

׿
×
𝔽